Renewable plastic made
from Mother Nature
By Brenda
Hernandez
Plastic Pollution
Currently, the average American throws
away approximately 185 pounds of plastic every year…that is enough to
circle the earth four times. Keep in mind that the circumference of the earth
is 24,901 miles- yikes! Plastic constitutes approximately 90% off all the trash
floating on the ocean’s surface, which can kill marine mammals. Frequently
found on the ocean are plastic water bottles, possibly because Americans
dispose of 35 billion plastic water bottles yearly. Half of the plastic used, only
gets used once, and only 5% of the plastic that gets thrown away is recovered.
The main way of recovering plastic is recycling.
So why recycle?
Recycling reduces the amount of waste
sent to landfills and incinerators. It also prevents pollution by reducing the
need to collect new raw materials and conserves natural resources such as
timber, water, and minerals. Recycling reduces greenhouse gas emissions that
contribute to global climate change and helps sustain the environment for
future generations, all while saving energy.
In 2014, California became the first state to ban
the sale of plastic single-use bags.
San Francisco became the first jurisdiction in California to ban single-use
plastic bags, in 2007. Last year, Los Angeles, the largest city in California
and second largest in the United States, banned single-use plastic bags and
placed a 10-cent charge on paper bags. When it comes to shopping bags and water
bottles, it is advised to reuse. Although it may be easier to recycle and reuse
plastic shopping bags and water bottles, it is harder to reuse and recycle food
packaging. The plastic used for food packaging has several purposes. Most
importantly, it protects food products from distribution damage, contains the
food, and provides consumers with ingredient and nutrition information.
Really, the
overall goal of food packaging is to contain food in a cost-effective
way that satisfies industry requirements and consumer desires, maintains food
safety, and minimizes environmental impact. So what are some innovative ways to
do all of the above? Renewable plastic!
So what is renewable plastic?!
A
novel way to make plastic from carbon dioxide and inedible plant material, such
as agricultural waste and grasses has been discovered. Researchers say the new
technology could provide a low-carbon alternative to plastic bottles and other
items currently made from petroleum. The current goal is to replace
petroleum-derived products with plastic made from CO2. Scientists from Stanford believe that by changing the formula for
plastic by using Earth-friendly materials to create plastic, the goal will be
feasible. Many plastic products today are made from a polymer called
polyethylene terephthalate (PET), also known as polyester. PET is made from two
components, terephthalic acid and ethylene glycol, which are derived from
refined petroleum and natural gas. Manufacturing PET produces significant
amounts of CO2, a greenhouse gas that contributes to global warming.
A promising alternative to PET called polyethylene furandicarboxylate (PEF). PEF is made from ethylene glycol and a compound called
2-5-Furandicarboxylic acid (FDCA). PEF is an attractive replacement for PET
because FDCA can be sourced from biomass instead of petroleum. Despite the many
desirable attributes of PEF, the plastics industry has yet to find a low-cost
way to manufacture it at scale. One approach is to convert fructose into FDCA from
corn syrup. A better alternative is to make FDCA from inedible biomass, like
grasses or waste material left over after harvest, such as furfural, a compound
made from agricultural waste. However, making FDCA from furfural and CO2
typically requires hazardous chemicals (carbonate) that are expensive and
energy-intensive to make. By combining carbonate with CO2 and furoic
acid, a molten salt is formed which becomes the starting material for FDCA. The
next step, transforming FDCA into PEF plastic, is a straightforward process
that has been worked out by other researchers.
Chemistry
can unlock the promise of PEF that has yet to be realized. This is just the
first step. Some work still needs to be done to see if it is viable at scale
and to quantify the carbon footprint. But as of now PEF has the potential to
significantly reduce greenhouse emissions as it is made entirely from vegetable raw materials and CO2. Not only is PEF considered to be the
packaging material of the future, particularly for food and beverages, but PEF can
also be recycled or converted back to atmospheric CO2 by
incineration. Eventually, that CO2 will be taken up by grass, weeds
and other renewable plants, which can then be used to make more PEF. Lastly,
PEF promises a greater level of impermeability to carbon dioxide and oxygen,
thus ensuring a longer shelf life of packaged products. Overall, by providing a
low-carbon and petroleum alternative to plastic packaging, PEF is looking like
a promising replacement for polyethylene terephthalate due to the potential of
reducing greenhouse emissions by a drastic measure. PEF will proved package
modernization for consumer convenience, along with a makeover healthy to the
environment- a double win!
References:
Dianne Depra.
Researchers Develop Renewable Plastic From Carbon Dioxide And Plants. 2016.
Available from: http://www.techtimes.com/articles/140066/20160312/researchers-develop-renewable-plastic-from-carbon-dioxide-and-plants.htm
Clare Goldsberry. 2015. Innovations and Trends in Plastic Food Packaging. Available from: http://www.areadevelopment.com/FoodProcessing/Q4-2015-food-processing-guide/Innovations-Trends-in-Plastic-Food-Packaging-782311.shtml
Stanford University.
Science Daily. Renewable plastic made from carbon dioxide and plants. 2016.
Available from: www.sciencedaily.com/releases/2016/03/160309135712.htm